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Sensitivity Overview

% Sensitivity to v, - Ve (Ve appearance) signals using inclusive ve
charged-current event samples

— All known backgrounds included
— Detailed systematics evaluation, correlations between data sets

— Some conservative choices & assumptions where future improvement will be possible
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Sensitivity Overview

% Sensitivity to v, - Ve (Ve appearance) signals using inclusive ve
charged-current event samples

— All known backgrounds included
— Detailed systematics evaluation, correlations between data sets

— Some conservative choices & assumptions where future improvement will be possible

% Sensitivity to v, - vx (v, disappearance) signals using inclusive
vy charged-current events also evaluated

— Important capability with an accelerator decay-in-flight beam experiment that is
complementary to an appearance search for sterile neutrino oscillations

< Appearance (ve) and disappearance (v,) analyses currently
performed independently

— Simultaneous analysis of ve/vy, including correlations between samples, will greatly
improve ability to understand any new physics signals
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“* Monte Carlo simulation in three steps:
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A Note on Simulations

“* Monte Carlo simulation in three steps:

1) BNB fluxes and systematics evaluated using a mature Geant4 simulation developed for
MiniBooNE and constrained with dedicated external hadron production data

A.A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), “The Neutrino Flux Prediction at MiniBooNE,” Phys.Rev. D79,
072002 (2009), arXiv:0806.1449 [hep-ex]

®

M.G. Catanesi et al. (HARP Collaboration), “Measurement of the production cross-section of positive pions in the collision
of 8.9-GeV/c protons on beryllium,” Eur.Phys.J. C52, 29-53 (2007), arXiv:0702024 [hep-ex]
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“* Monte Carlo simulation in three steps:

1) BNB fluxes and systematics evaluated using a mature Geant4 simulation developed for
MiniBooNE and constrained with dedicated external hadron production data

® A.A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), “The Neutrino Flux Prediction at MiniBooNE,” Phys.Rev. D79,
072002 (2009), arXiv:0806.1449 [hep-ex]

® M.G. Catanesi et al. (HARP Collaboration), “Measurement of the production cross-section of positive pions in the collision
of 8.9-GeV/c protons on beryllium,” Eur.Phys.J. C52, 29-53 (2007), arXiv:0702024 [hep-ex]

2) Neutrino-Argon interactions and systematics evaluated using the GENIE event
generator; cross checked against an independent FLUKA simulation in T600

® C. Andreopoulos et al., “The GENIE Neutrino Monte Carlo Generator,” Nucl. Instrum. Meth. A614, 87-104 (2010), arXiv:
0905.2517 [hep-ph]

® G. Battistoni, A. Ferrari, M. Lantz, P. R. Sala, and G. I. Smirnov, “A neutrino-nucleon interaction generator for the FLUKA
Monte Carlo code,” in CERN-Proceedings-2010-001, pp. 387-394.
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generator; cross checked against an independent FLUKA simulation in T600
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3) Particle propagation in argon volumes simulated using Geant4 or FLUKA
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A Note on Simulations

“* Monte Carlo simulation in three steps:

1) BNB fluxes and systematics evaluated using a mature Geant4 simulation developed for
MiniBooNE and constrained with dedicated external hadron production data

® A.A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), “The Neutrino Flux Prediction at MiniBooNE,” Phys.Rev. D79,
072002 (2009), arXiv:0806.1449 [hep-ex]

® M.G. Catanesi et al. (HARP Collaboration), “Measurement of the production cross-section of positive pions in the collision
of 8.9-GeV/c protons on beryllium,” Eur.Phys.J. C52, 29-53 (2007), arXiv:0702024 [hep-ex]

2) Neutrino-Argon interactions and systematics evaluated using the GENIE event
generator; cross checked against an independent FLUKA simulation in T600

® C. Andreopoulos et al., “The GENIE Neutrino Monte Carlo Generator,” Nucl. Instrum. Meth. A614, 87-104 (2010), arXiv:
0905.2517 [hep-ph]

® G. Battistoni, A. Ferrari, M. Lantz, P. R. Sala, and G. I. Smirnov, “A neutrino-nucleon interaction generator for the FLUKA
Monte Carlo code,” in CERN-Proceedings-2010-001, pp. 387-394.

3) Particle propagation in argon volumes simulated using Geant4 or FLUKA

For beam events, same simulation used in ALL three detectors,
so sample correlations can be evaluated from Monte Carlos
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A Note on Event Selections

“* Events are currently selected for signal and background samples
based on MC truth information about the final state
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“* Events are currently selected for signal and background samples
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analysis results from LAr-TPC experiments (e.g. ICARUS, ArgoNeuT)

SBN: Fermilab PAC, January 2015



A Note on Event Selections

“* Events are currently selected for signal and background samples
based on MC truth information about the final state

“ The efficiencies that get applied to different event topologies are
informed by inputs from other simulation results, hand-scanning
studies of both simulated and real events in different detectors, and
analysis results from LAr-TPC experiments (e.g. ICARUS, ArgoNeuT)

“ Observation thresholds are applied based on relevant experience
from other detectors (e.g. 21 MeV proton threshold in ArgoNeuT data)

SBN: Fermilab PAC, January 2015



A Note on Event Selections

“* Events are currently selected for signal and background samples
based on MC truth information about the final state

“ The efficiencies that get applied to different event topologies are
informed by inputs from other simulation results, hand-scanning
studies of both simulated and real events in different detectors, and
analysis results from LAr-TPC experiments (e.g. ICARUS, ArgoNeuT)

“ Observation thresholds are applied based on relevant experience
from other detectors (e.g. 21 MeV proton threshold in ArgoNeuT data)

“* ‘Reconstructed Neutrino Energy’ is calculated by summing energies
of visible final state particles. True energies are smeared according to
expected resolutions (15%/VE for e.m. showers, 5% for hadrons, etc.)
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ve CC Signal & Background Categories
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** Electron neutrino CC interactions

—T|'—>|J—>Ve

+
— K" - Ve Intrinsic beam ve
- KO —> Ve

— Sample appearance signal

< Photon-induced e.m. shower backgrounds

— v, CC misIDs

— “Dirt” Backgrounds: beam-related but
out-of-detector interactions

— Cosmogenic photon sources



Electromagnetic Shower Selection

SBN: Fermilab PAC, Januar y 2015



Electromagnetic Shower Selection

“* We require the electromagnetic shower in all selected events
to be initiated with E > 200 MeV ¢ |

o 1
@ E. for electron showers Ogil‘r,_'—_,\i—
Tt Impact of

Efficie

® E, for gamma pair production events I 200 MeV
_ °or requirement
® Ee for gamma Compton scattering events [ on intrinsic
04 Ve CC
0.2}
0:‘OﬁSHH*‘H1‘.5HH2‘H“2‘.5””3
Energy (GeV)
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Electromagnetic Shower Selection

< We require the electromagnetic shower in all selected events

to be initiated with E > 200 MeV ¢ |
® Ee for electron showers mosil—r'_'—_,\i—
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® E, for gamma pair production events I 200 MeV
_ °or requirement
® Ee for gamma Compton scattering events [ on intrinsic
04 Ve CC
0.2}
0V‘‘OﬁSH‘‘‘1‘”‘1‘.5””2‘””2‘.5””3
Energy (GeV)

“*This minimum shower threshold is applied to help ensure good
reconstruction and identification of signal events
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Electromagnetic Shower Selection

< We require the electromagnetic shower in all selected events

to be initiated with E > 200 MeV i
;;I_r,_,_,\i—lmpact of

® Ee for electron showers
® E, for gamma pair production events I 200 MeV
requirement

® Ee for gamma Compton scattering events [ on intrinsic
Ve CC

Efficiency
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“*This minimum shower threshold is applied to help ensure good
reconstruction and identification of signal events

“*Note the threshold for analysis of events in LAr should be below
this and lower energy events will certainly be studied in the SBN
experiments, they are just not included here
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Electromagnetic Shower ID Efficiencies

** Electron showers:

— 80% identification efficiency applied to charged-current inclusive sample for intrinsic
and signal electron neutrinos (after 200 MeV requirement)

% Individual photon showers:

— 94% rejection of single photon pair production showers (y—e*e’) based on expected
performance of dE/dx analysis to identify 2 mips at the start of the shower

— Single photon Compton scatters are retained as an irreducible background
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NC Photon Final States

ss00F- 1600, 6.6e+20 POT (600m) = Ve R 0

= Signal: ( Am? = 0.43 eV 2 sin® 20,,=0.013) EEK’ >, » Neutral current m° - VY
4000— gtatistical Uncertainty Only E ZC ;n"t;e

- —_— i
asoo- INTERNAL =, cc | — Ifboth photons convert above threshold
3000 - WR Dt in TPC volume, can reject

BB Cosmics

2500 F — Signal

— If only one converts:

Events / GeV

® Look for a visible event vertex and a gap
before the e.m. shower

® dE/dx cut to reject pair production
0.5 1 15 2 25 3
Reconstructed Energy (GeV) < Neutral current single vy final

states

® Look for a visible event vertex and a gap
before the e.m. shower

® dE/dx cut to reject pair production

Summary:

Vertex Requirement: > 50MeV .
Gap Requirement > 3cm I Conver5|on Gap + dE/dXI
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v CC Interactions
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Reconstructed Energy (GeV) < When longest track < 1m and
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© pions .
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E 10000:'
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“Dirt” Bac
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% Single photon
entering the
detector creates
a potential

background

% Helped by short
radiation length
in argon (14 cm)
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Y Location of Photon Creation [cm]
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“Dirt” Backgrounds

Detector Estimated Dirt Background Events (6.6 x 102° POT)
z <90 em z > 50 cm Total
LAr1-ND 26.2 17.0 43.2
MicroBooNE 2.38 19.5 21.9
ICARUS-T600 5.15 57.0 62.2

% Chose a very conservative 25 cm buffer around the
fiducial volume to minimize dirt contamination (also
reduce external cosmogenic photons)

% Will be revisited in future to optimize against fiducial
volume loss

Events

% Apply more sophisticated external photon ID (e.g.
distance to wall in reverse shower direction)

| Summary:

rhoton Eneray [&e¥) dE/dx + Fiducial Volume Bufferl

SBN: Fermilab PAC, January 2015
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Cosmogenic Backgrounds

ss00F 1600, 6.6+20 POT (600m) =;;( >V,
. S ot -osaev oo B2 |4 The problem: 1000x longer
ss00C- INTERNAL == N Single 1

R —h charge drift time than the

9 F BB Cosmics .

@ B0F — signal beam spill length

o

(O]

(0 — 1.6 us beam spill

— ~1 ms TPC drift time

0.5 1 1.5 2 2.5 3
Reconstructed Energy (GeV)

Cosmic muons | Neutrino interaction | Cosmic muon in beam
per readout every N spills spill every N spills

LAr1 ND
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Cosmogenic Backgrounds

< Again, the 14cm radiation length is a help

— Any primary photons that penetrate the shielding or are produced by other primaries
around the detector will convert mostly near the TPC active volume boundaries

< Dominant source of cosmogenic e.m. showers in the TPC are,
therefore, muons that also enter the TPC.

E, > 200 MeV, Pair prod

Cosmic photon interaction description |Timing|Topology| FE. > 200 MeV, Compton
Cat. Cat. LAr1-ND| puBooNE| ICARUS

1|y Compton in spill, primary p enters AV A I 887 206 599
2|~ Pair prod in spill, primary u enters AV| A I 52,300 11,600 32,000
3|y Compton in spill, primary misses AV A II <1 <3 <4
4|~ Pair prod in spill, primary misses AV A II 55 82 11
5|y Compton in drift, primary p enters AV| B 2,550 1,030 3,300
6|v Pair prod in drift, primary u enters AV| B 150,200 | 57,950 | 176,000
7|y Compton in drift, primary misses AV B II <3 12.4 <4
8|~ Pair prod in drift, primary misses AV B IT 160 410 60

SBN: Fermilab PAC, January 2015

v In Spill Time
drift
XN,

v In Drift
(muon in spill)
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Cosmogenic Backgrounds

< Again, the 14cm radiation length is a help

— Any primary photons that penetrate the shielding or are produced by other primaries
around the detector will convert mostly near the TPC active volume boundaries

< Dominant source of cosmogenic e.m. showers in the TPC are,
therefore, muons that also enter the TPC.

E, > 200 MeV

10° <15 cm = 99.2%

5 10 15 20 25 30

N Distance from Shower to Muon [cm]
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Cosmogenic Backgrounds

“* Topology I: parent muon enters the active volume

7

** Reject showers within a cylinder around all muon tracks (reject ~99%)

7

% dE/dx for pair production showers (reject 94%)

< Topology II: primary photon or parent is not visible

% dE/dx for pair production showers (reject 94%)

E, > 200 MeV, Pair prod
Interaction description Timing | Topology| E. > 200 MeV, Compton, v,
Cat. Cat. LAr1-ND| uBooNE| ICARUS

1|y Compton in spill, primary p enters AV A I 8 <3 <4
2|7y Pair prod in spill, primary u enters AV| A I 26 6 21 y In Spill Time
3|y Compton in spill, primary misses AV A II <1 <3 <4
4|~ Pair prod in spill, primary misses AV A II <4 6 <1 X Ndrift
5|7 Compton in drift, primary u enters AV| B 22 12 30 H
6|~ Pair prod in drift, primary p enters AV| B 74 29 113 v In Drift
7|y Compton in drift, primary misses AV B II <3 12 <4 (muon in spill)
8|~ Pair prod in drift, primary misses AV B I1 10 19 <4

Total Cosmogenic v backgrounds 146 88 164

Intrinsic v, CC 15,800 413 1,500

SBN: Fermilab PAC, January 2015 16



ve CC Signal & Background Categories
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CC Signal & Background Categories
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Analysis Method and Uncertainties

x?(Am3,, sin® 20) = Z [N — Ngse(Am,, sin® 26)] (Ey;)~" [N — N2°°(Amjy, sin® 26)|

7:7.7. ‘
4,

Etotal — Estat e Esyst

|

Esyst — Eﬁux i [cross section i Ecosmic bkgd i Edirt bkgd i Edetector

N

1 i i : ;
Eij - ./v § :[NCV o Nm] X [N(J}V o Nrjn]
m=1

Monte Carlo
“universes”

i Error matrix

e

E..
[—1 < p<1]

L= Y
IOZ] \/E_tn\/E’i‘” — —

Correlation matrix }'

The correlation between samples is encoded into an error
matrix in bins of Ereco Used to calculate the y? statistic
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Flux & Cross Section Correlations

Flux
Systematic

Evaluated with full
BNB G4 Monte Carlo
developed by
MiniBooNE

Unconstrained
uncertainties 5-10%

Cross Section
Systematics

Evaluated with full
GENIE Event
Generator simulation

Unconstrained
uncertainties 10-30%
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MicroBooNE (470m)
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vu Flux Correlation Matrix
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Dirt and Cosmic Uncertainties
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Dirt and Cosmic Uncertainties

< “Dirt” background level constrained with beam data

— Study events near the active detector perimeter, with enhanced dirt backgrounds

— Rate depends on details of detectors and surroundings, so measure in each detector

— We estimated it can be measured to ~15%, uncorrelated between detectors
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Dirt and Cosmic Uncertainties

< “Dirt” background level constrained with beam data

— Study events near the active detector perimeter, with enhanced dirt backgrounds

— Rate depends on details of detectors and surroundings, so measure in each detector

— We estimated it can be measured to ~15%, uncorrelated between detectors

< Cosmic backgrounds constrained with off-beam data

— It was critical to estimate the rates (as we have done) in order to know that oscillation
signals could be observed over the cosmic background

— The exact rate, however, does not introduce significant systematic uncertainty because
it can be measured with high precision using off-beam random event triggers

— For the sensitivity analysis, we construct the cosmic error matrix to account for the
statistical uncertainty on the predicted sample and assume negligible systematics
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Ve Appearance Sensitivity
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Impact of Cosmic Backgrounds

20—
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sz
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E - SBN, Topological Cosmic ID OnIy : ] [ S : A
12 ........... ........._. ...... N L R LT IR LR

Significance

% Stronger rejection of cosmic backgrounds through cosmic
tagging and timing improves the sensitivity ~0.750 at low Am?
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Impact of ve Statistics

% Increased exposure through, for example, improved BNB
performance has a major impact
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vu Disappearance Sensitivity
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Summary
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Ve Selection Efficiency

< For fixed exposure time, each 10% reduction in signal
efficiency is about 0.5 in sensitivity
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SBN Detectors
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Compare to MiniBooNE Neutrino Mode
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Flux Systematics

“* BNB Monte Carlo treats systematic uncertainties related to
— Primary production of *, ", K*, K-, and K° in p+Be collisions at 8 GeV
— Secondary interactions of p, n, r* in the beryllium target and aluminum horn

— Beam focusing with the magnetic horn

HARP mt* data
250 T 7? T T T T T T T T T
200: 0%\%%:45 mrad : %i%if 0,+=75 mrad
L /TL - r__rr;. - I/“ : g
. N - >
protons»k ' )//“/j’_‘ \‘.J > $
" —— * - > g
8 GeV) | L= K o 5
1. 5 ._\!\‘ ‘Lb \:+‘ I" > §
u— K+ ¥‘ “‘-g
target and horn .
decay region —
(50 m)
o)) ST S T P TS Y )
1 2 3 4 5 1 2 3 4 5
py+(GeV/c) p+(GeV/c)

Largest uncertainty (pion production) constrained with dedicated data from HARP experiment.

Kaon production constrained with available world data and SciBooNE measurements at high energy.
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Cross Section Systematics

Parameter Description 1o Uncertainty (%)
MgCQE Axial mass for CC quasi-elastic -15%+25%
M§CRES Axial mass for CC resonance neutrino production +20%

M 114\] CRES Axial mass for NC resonance neutrino production +20%
RZ&CC“ Non-resonance background in vp, CC 17 reactions. +50%
RZ};CC% Non-resonance background in vp, CC 2w reactions. +50%
RZ,Z;CCM Non-resonance background in vn, CC 17 reactions. +50%
RZ,Z;CO% Non-resonance background in vn, CC 27 reactions. +50%
RZ}:;]NCI“ Non-resonance background in vp, NC 17 reactions. +50%
RZIQ’]NC% Non-resonance background in vp, NC 27 reactions. +50%
Ry, g’NC“ Non-resonance background in vn, NC 17 reactions. +50%
R, S;NO% Non-resonance background in vn, NC 27 reactions. +50%
NC Neutral current normalization +25%
DIS-NuclMod DIS, nuclear model Model switch

TABLE IV: Neutrino interaction model parameters and uncertainties. This information is repro-
duced here from the GENIE manual Section 8.1 [66] for convenience.
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vy, Sensitivity with Detector Systematics
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3% uncorrelated detector systematic
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